3 resultados para Antimicrobial Cationic Peptides

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study two distinctly ordered condensed phases of polypeptide molecules, amyloid fibrils and amyloidlike microcrystals, and the first-order twisting phase transition between these two states. We derive a single free-energy form which connects both phases. Our model identifies relevant degrees of freedom for describing the collective behavior of supramolecular polypeptide structures, reproduces accurately the results from molecular dynamics simulations as well as from experiments, and sheds light on the uniform nature of the dimensions of different peptide fibrils. © 2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-material interactions are crucial for cell adhesion and proliferation on biomaterial surfaces. Immobilization of biomolecules leads to the formation of biomimetic substrates, improving cell response. We introduced RGD (Arg-Gly-Asp) sequences on poly-ε-caprolactone (PCL) film surfaces using thiol chemistry to enhance Schwann cell (SC) response. XPS elemental analysis indicated an estimate of 2-3% peptide functionalization on the PCL surface, comparable with carbodiimide chemistry. Contact angle was not remarkably reduced; hence, cell response was only affected by chemical cues on the film surface. Adhesion and proliferation of Schwann cells were enhanced after PCL modification. Particularly, RGD immobilization increased cell attachment up to 40% after 6 h of culture. It was demonstrated that SC morphology changed from round to very elongated shape when surface modification was carried out, with an increase in the length of cellular processes up to 50% after 5 days of culture. Finally RGD immobilization triggered the formation of focal adhesion related to higher cell spreading. In summary, this study provides a method for immobilization of biomolecules on PCL films to be used in peripheral nerve repair, as demonstrated by the enhanced response of Schwann cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant-clay interactions are key for the development of new clay applications and inorganic-organic nanocomposites. Bentonite, with montmorillonite as the principal clay mineral constituent, was modified with varying concentrations of hexadecethyltrimethylammonium chloride (HDTMA), as a reference cationic surfactant, polypropylene glycol (PPG) 1200 and 2000, as non-ionic surfactants, and lecithin and Topcithin®, as amphiphilic phospholipid surfactants, according to the cation exchange capacity (CEC). The modified bentonites were characterised by X-ray diffraction, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectrometry, specific surface area and pore volume. Three intercalation regions have been identified depending on the surfactant. The non-ionic surfactant caused only a crystalline expansion of bentonite interlayers, while the cationic surfactant induced an osmotic intercalation. The amphiphilic lecithin derivatives intercalated more extensively with the bentonite matrix. The TGA and the FTIR spectra showed that, at lower concentrations, the PPGs and HDTMA adopted a disordered conformation that required more energy to degrade, while at higher concentrations, the surfactants were ordered in the interlayer space of the bentonite. The lecithin derivative surfactant had a greater thermal and conformation stability. The specific surface area reduced with increasing surfactant concentrations. This study highlights the effect of surfactant type on the interlayer space of montmorillonite in the perspective of developing novel clay functions. © 2013.